Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set.
نویسندگان
چکیده
Noncovalent interactions play an important role in the stabilization of biological molecules. The effective fragment potential (EFP) is a computationally inexpensive ab initio-based method for modeling intermolecular interactions in noncovalently bound systems. The accuracy of EFP is benchmarked against the S22 and S66 data sets for noncovalent interactions [Jurečka, P.; Šponer, J.; Černý, J.; Hobza, P. Phys. Chem. Chem. Phys.2006, 8, 1985; Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput.2011, 7, 2427]. The mean unsigned error (MUE) of EFP interaction energies with respect to coupled-cluster singles, doubles, and perturbative triples in the complete basis set limit [CCSD(T)/CBS] is 0.9 and 0.6 kcal/mol for S22 and S66, respectively, which is similar to the MUE of MP2 and SCS-MP2 for the same data sets, but with a greatly reduced computational expense. Moreover, EFP outperforms classical force fields and popular DFT functionals such as B3LYP and PBE, while newer dispersion-corrected functionals provide a more accurate description of noncovalent interactions. Comparison of EFP energy components with the symmetry-adapted perturbation theory (SAPT) energies for the S22 data set shows that the main source of errors in EFP comes from Coulomb and polarization terms and provides a valuable benchmark for further improvements in the accuracy of EFP and force fields in general.
منابع مشابه
Symmetry-adapted perturbation theory with Kohn-Sham orbitals using non-empirically tuned, long-range-corrected density functionals.
The performance of second-order symmetry-adapted perturbation theory (SAPT) calculations using Kohn-Sham (KS) orbitals is evaluated against benchmark results for intermolecular interactions. Unlike previous studies of this "SAPT(KS)" methodology, the present study uses non-empirically tuned long-range corrected (LRC) functionals for the monomers. The proper v xc (r)→0 asymptotic limit is achiev...
متن کاملAccurate Intermolecular Interactions at Dramatically Reduced Cost: XPol+SAPT with Empirical Dispersion
An efficient, monomer-based electronic structure method is introduced for computing noncovalent interactions in molecular and ionic clusters. It builds upon our explicit polarization plus symmetry-adapted perturbation theory approach, XPol+SAPT (XPS), but replaces the problematic and expensive sum-over-states dispersion terms with empirical potentials. This modification reduces the scaling from...
متن کاملRange-separated density-functional theory with random phase approximation applied to noncovalent intermolecular interactions.
Range-separated methods combining a short-range density functional with long-range random phase approximations (RPAs) with or without exchange response kernel are tested on rare-gas dimers and the S22 benchmark set of weakly interacting complexes of Jurecka et al. [Phys. Chem. Chem. Phys. 8, 1985 (2006)]. The methods are also compared to full-range RPA approaches. Both range separation and incl...
متن کاملAn efficient, fragment-based electronic structure method for molecular systems: self-consistent polarization with perturbative two-body exchange and dispersion.
We report a fragment-based electronic structure method, intended for the study of clusters and molecular liquids, that incorporates electronic polarization (induction) in a self-consistent fashion but treats intermolecular exchange and dispersion interactions perturbatively, as post-self-consistent field corrections, using a form of pairwise symmetry-adapted perturbation theory. The computation...
متن کاملQuantum Chemistry Study & Evaluation of Basis Set Effects on Prediction of Amino Acids Properties:
The potential energy surface of gaseous glycine determined years ago in the ab initio B3LYP/6-311++G** calculations is composed of thirteen stable conformers. We performed the ab initiomolecular orbital calculations as the starting point to carry out a force field and normal coordinatecalculation on the most stable conformer of non-zwitterionic glycine [conformer (I)]. Thecalculations were carr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chemical theory and computation
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2012